Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves

Franck Rondepierre

Oberthur Technologies Crypto Group

Cardis 2013
(1) Introduction
(2) Elliptic Curve Background
(3) Side-Channel Analysis Simple Power Attack
State-of-the-Art Countermeasures
4) Our Contribution
(5) Conclusion

Discrete Log Problem (DLP)

Given two elements G, P of a cyclic group, find a scalar k such that:

$$
\underbrace{G+\cdots+G}_{k \text { times }}=[k] G=P
$$

- DLP is a assumed to be a hard problem
- Elliptic Curve Cryptography (ECC) is based on this problem
- ECC implementations must not reveal secret scalars
(1) Introduction
(2) Elliptic Curve Background
(3) Side-Channel Analysis Simple Power Attack State-of-the-Art Countermeasures
(4) Our Contribution
(5) Conclusion

(1) Introduction

(2) Elliptic Curve Background
(3) Side-Channel Analysis Simple Power Attack State-of-the-Art Countermeasures
4) Our Contribution
(5) Conclusion

Elliptic Curve Definition

Short Weïerstrass equation

$p>3, \quad\{a, b\} \subset \mathbb{F}_{p}, \quad 4 a^{3}+27 b^{2} \neq 0$.

$$
(\mathcal{E}): y^{2}=x^{3}+a x+b .
$$

$\left(\mathcal{E}\left(\mathbb{F}_{p}\right) \cup \mathcal{O},+\right)$ abelian group.

Elliptic Curve Group Law

$P+Q+R=0$

$P+Q+Q=0$

$P+Q+0=0$

Scalar Multiplication

Right-to-Left Evaluation <

Left-to-Right Evaluation

Scalar Multiplication

Right-to-Left Evaluation <

$$
\left[k_{0}\right] P
$$

Left-to-Right Evaluation

Scalar Multiplication

Right-to-Left Evaluation <

$$
\left[k_{0}\right] P+\left[k_{1}\right] 2 P
$$

Left-to-Right Evaluation

Scalar Multiplication

Right-to-Left Evaluation <

$$
[k] P=\left[k_{0}\right] P+\left[k_{1}\right] 2 P+\ldots+\left[k_{\ell-1}\right] 2^{\ell-1} P
$$

Left-to-Right Evaluation

Scalar Multiplication

Right-to-Left Evaluation <

Left-to-Right Evaluation

$$
\left[k_{\ell-1}\right] P
$$

Scalar Multiplication

Right-to-Left Evaluation <

Left-to-Right Evaluation

$$
2\left(\left[k_{\ell-1}\right] P\right)+\left[k_{\ell-2}\right] P
$$

Scalar Multiplication

Right-to-Left Evaluation <

Left-to-Right Evaluation

$$
[k] P=2\left(\ldots 2\left(2\left(\left[k_{\ell-1}\right] P\right)+\left[k_{\ell-2}\right] P\right)+\ldots\right)+\left[k_{0}\right] P
$$

Scalar Multiplication

Right-to-Left Evaluation <

Left-to-Right Evaluation

- A doubling is performed for every scanned bit

Scalar Multiplication

Right-to-Left Evaluation <

Left-to-Right Evaluation

- A doubling is performed for every scanned bit
- An addition is performed only for non-zero bit

Improved Techniques

- Pre/Post-computations
- RAM consumption
- Reduce the number of doublings and additions

Improved Techniques

Window Techniques 4

Straus-Shamir Trick

Sparse Representations

Improved Techniques

Window Techniques

$$
k: \begin{array}{lllllllllllllllll}
& k_{\ell-1} & \ldots & k_{5} & k_{4} & k_{3} & k_{2} & k_{1} & k_{0}
\end{array}
$$

Straus-Shamir Trick

Sparse Representations

Improved Techniques

Window Techniques

$$
k: \begin{array}{llllllllllllllll}
& k_{\ell-1} & \ldots & k_{5} & k_{4} & k_{3} & k_{2} & k_{1} & k_{0}
\end{array}
$$

Straus-Shamir Trick

Sparse Representations

Improved Techniques

Window Techniques

$$
k: \begin{array}{llllllllllllllll}
& k_{\ell-1} & \ldots & k_{5} & k_{4} & k_{3} & k_{2} & k_{1} & k_{0}
\end{array}
$$

Straus-Shamir Trick

Sparse Representations

Improved Techniques

Window Techniques

$$
k: \begin{array}{llllllllllllllll}
& k_{\ell-1} & \ldots & k_{5} & k_{4} & k_{3} & k_{2} & k_{1} & k_{0}
\end{array}
$$

Straus-Shamir Trick

Sparse Representations 4

Improved Techniques

Window Techniques

$$
k: \begin{array}{lllllllllllllll}
& k_{\ell-1} & \ldots & k_{5} & k_{4} & k_{3} & k_{2} & k_{1} & k_{0}
\end{array}
$$

Straus-Shamir Trick

Sparse Representations

Improved Techniques

Window Techniques

$$
k: \begin{array}{lllllllllllllll}
& k_{\ell-1} & \ldots & k_{5} & k_{4} & k_{3} & k_{2} & k_{1} & k_{0}
\end{array}
$$

Straus-Shamir Trick

Sparse Representations

Improved Techniques

Window Techniques

$$
k: \begin{array}{llllllllllllllll}
& k_{\ell-1} & \ldots & k_{5} & k_{4} & k_{3} & k_{2} & k_{1} & k_{0}
\end{array}
$$

Straus-Shamir Trick

Sparse Representations

Improved Techniques

Window Techniques

$$
k: \begin{array}{lllllllllllllll}
& k_{\ell-1} & \ldots & k_{5} & k_{4} & k_{3} & k_{2} & k_{1} & k_{0}
\end{array}
$$

Straus-Shamir Trick

Sparse Representations

Improved Techniques

Window Techniques

Straus-Shamir Trick

$$
\text { k: } \begin{array}{ccccc}
k_{\ell-1} & k_{\ell-2} & k_{\ell-3} & \ldots & k_{\ell / 2} \\
k_{\ell / 2-1} & k_{\ell / 2-2} & k_{\ell / 2-3} & \ldots & k_{0}
\end{array}
$$

Sparse Representations 4>

Improved Techniques

Window Techniques 4

Straus-Shamir Trick

$$
\text { k: } \begin{array}{ccccc}
k_{\ell-1} & k_{\ell-2} & k_{\ell-3} & \ldots & k_{\ell / 2} \\
k_{\ell / 2-1} & k_{\ell / 2-2} & k_{\ell / 2-3} & \ldots & k_{0}
\end{array}
$$

Sparse Representations 4>

Improved Techniques

Window Techniques 4

Straus-Shamir Trick

$$
\begin{aligned}
& \text { k: } \begin{array}{lllll}
k_{\ell-1} & k_{\ell-2} & k_{\ell-3} & \ldots & k_{\ell / 2}
\end{array} \\
& \begin{array}{lllll}
k_{\ell / 2-1} & k_{\ell / 2-2} & k_{\ell / 2-3} & \ldots & k_{0}
\end{array}
\end{aligned}
$$

Sparse Representations

Improved Techniques

Window Techniques

Straus-Shamir Trick

$$
\begin{aligned}
& \text { k: } \begin{array}{lllll}
k_{\ell-1} & k_{\ell-2} & k_{\ell-3} & \ldots & k_{\ell / 2}
\end{array} \\
& \begin{array}{lllll}
k_{\ell / 2-1} & k_{\ell / 2-2} & k_{\ell / 2-3} & \ldots & k_{0}
\end{array}
\end{aligned}
$$

Sparse Representations

Improved Techniques

Window Techniques 4

Straus-Shamir Trick

$$
\begin{aligned}
& \text { k: } \begin{array}{lllll}
k_{\ell-1} & k_{\ell-2} & k_{\ell-3} & \ldots & k_{\ell / 2}
\end{array} \\
& \begin{array}{lllll}
k_{\ell / 2-1} & k_{\ell / 2-2} & k_{\ell / 2-3} & \ldots & k_{0}
\end{array}
\end{aligned}
$$

Sparse Representations 4>

Improved Techniques

Window Techniques 4-

Straus-Shamir Trick

Sparse Representations 4>

Aim at increasing zero digits with the help of negative digits:

$$
\text { 0xF7: } \begin{array}{llllllllll}
& 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}
$$

Improved Techniques

Window Techniques 4-

Straus-Shamir Trick

Sparse Representations 4>

Aim at increasing zero digits with the help of negative digits:

Outline

(1) Introduction

(2) Elliptic Curve Background
(3) Side-Channel Analysis Simple Power Attack State-of-the-Art Countermeasures
(4) Our Contribution
(5) Conclusion

Scalar Multiplication Analysis

Scalar multiplication

Scalar Multiplication Analysis

Scalar multiplication

Scalar Multiplication Analysis

- The secret scalar k can be recovered

Scalar multiplication

Regular Algorithms

- Operation flow independent of the secret
- Exemples: Double and Add Always, Montgomery Ladder,...

Scalar multiplication

(Dbl Add (Dbl Add (Dbl Add (Dbl Add \cdots

Atomicity Principle

- Introduced by Chevallier-Mames, Ciet, Joye [2003]
- One sequence of operations in \mathbb{F}_{p}.

\(\square\left[\begin{array}{l}Multiplication
Addition
Negation
Addition\end{array}\right.\)

Atomicity Principle

- Introduced by Chevallier-Mames, Ciet, Joye [2003]
- One sequence of operations in \mathbb{F}_{p}.
- Use this sequence with different operands.
$\square\left[\begin{array}{l}\text { Multiplication } \\ \text { Addition } \\ \text { Negation } \\ \text { Addition }\end{array}\right.$

Atomicity Principle

- Introduced by Chevallier-Mames, Ciet, Joye [2003]
- One sequence of operations in \mathbb{F}_{p}.
- Use this sequence with different operands.
$\square\left[\begin{array}{l}\text { Multiplication } \\ \text { Addition } \\ \text { Negation } \\ \text { Addition }\end{array}\right.$

Chevallier-Mames et al. EC Operations
 Doubling:

 $10 M+20 A+10 N$
 Addition: $\square \square \square \square \square \square \square \square \square 16 M+32 A+16 N$

Atomicity Algorithms

$$
\Longrightarrow \quad \square \quad 2 M+3 A+2 N \quad \text { Longa }
$$

Longa EC Operations
Doubling: \square $8 M+12 A+8 N$ Addition: \square $14 M+21 A+14 N$

Giraud-Verneuil EC Operations

[Cardis2010]

Atomicity Algorithms

$\square \square$	$\Longrightarrow \square$
$\square \square \square \square \square$	$\Longrightarrow \quad$
$\square \square$	$2 S+6 M+2 N$

Longa EC Operations

[2007]
Doubling: \square $8 M+12 A+8 N$ Addition: \square $14 M+21 A+14 N$

Giraud-Verneuil EC Operations

[Cardis2010]
Doubling: Addition:

$$
\begin{array}{r}
2 S+6 M+10 A \\
4 S+12 M+20 A
\end{array}
$$

(1) Introduction

2. Elliptic Curve Background

3 Side-Channel Analysis Simple Power Attack State-of-the-Art Countermeasures
4) Our Contribution
(5) Conclusion

How to Improve Patterns?

- More operations in a pattern \Longrightarrow less dummy operations.

How to Improve Patterns?

- More operations in a pattern \Longrightarrow less dummy operations.
- Efficient pattern for both addition and doubling?

How to Improve Patterns?

- More operations in a pattern \Longrightarrow less dummy operations.
- Efficient pattern for both addition and doubling?
- Optimize additions?

How to Improve Patterns?

- More operations in a pattern \Longrightarrow less dummy operations.
- Efficient pattern for both addition and doubling?
- Optimize additions?

Doubling:		10M
Addition:	- $\square_{\text {- }}$	16M

How to Improve Patterns?

- More operations in a pattern \Longrightarrow less dummy operations.
- Efficient pattern for both addition and doubling?
- Optimize additions?

Doubling: $\square \square \square \square \square \square \square \square$
Addition: $\square \square \square \square \square \square \square$
$\square \square$

How to Improve Patterns?

- More operations in a pattern \Longrightarrow less dummy operations.
- Efficient pattern for both addition and doubling?
- Optimize additions?

How to Improve Patterns?

- More operations in a pattern \Longrightarrow less dummy operations.
- Efficient pattern for both addition and doubling?
- Optimize additions?

Doubling:		10M
Addition:		10M

How to Improve Patterns?

- More operations in a pattern \Longrightarrow less dummy operations.
- Efficient pattern for both addition and doubling?
- Optimize additions?

New Atomic Patterns

All Curve Pattern

Doubling:
Addition:

$$
\begin{aligned}
& 3 S+8 M+9 A \\
& 3 S+8 M+9 A
\end{aligned}
$$

Most Curve Pattern $\boldsymbol{\square}$

Doubling:
Addition:
$2 S+8 M+10 A$
$2 S+8 M+10 A$

a = 0 Curve Pattern $>$

Doubling:
$2 S+7 M+8 A$
Addition:
$2 S+7 M+8 A$

New atomic Patterns

All Curve Pattern

This pattern can be used with all existing elliptic curves.
Most Curve Pattern
$a=0$ Curve Pattern

New atomic Patterns

All Curve Pattern

This pattern can be used with all existing elliptic curves.

Most Curve Pattern

This pattern restricts the value $I^{2}=-a 3^{-1}$ to be a quadratic residue. Then we have:

$$
3 X^{2}+a Z^{4}=3\left(X-I Z^{2}\right)\left(X+I Z^{2}\right)
$$

$a=0$ Curve Pattern

New atomic Patterns

All Curve Pattern

This pattern can be used with all existing elliptic curves.

Most Curve Pattern

This pattern restricts the value $I^{2}=-a 3^{-1}$ to be a quadratic residue. Then we have:

$$
3 X^{2}+a Z^{4}=3\left(X-I Z^{2}\right)\left(X+I Z^{2}\right)
$$

$a=0$ Curve Pattern

For security and efficiency reasons, the curves with $a=0$ have a dedicated pattern.

Implementation Limits

[k]P for unknown P

- $\mathrm{NAF}_{w=4}$
- ℓ doublings and $\ell / 5$ additions

[k]G for fixed point G

- Precompute $Q=\left[2^{\ell / 2}\right] G$ once for all
- Split k and compute $[k] G=\left[k_{0}\right] G+\left[k_{1}\right] Q$
- JSF
- $\ell / 2$ doublings and $\ell / 4$ additions

Implementation Characteristics

bit size	192	224	256	320	384	512	521
A/M	0.21	0.21	0.19	0.17	0.16	0.14	0.14
GV A/M	0.30	0.25	0.22	0.16	0.13	0.09	0.09

Performances

Performances

Performances

Performances

Countermeasure Overhead

(1) Introduction

(2) Elliptic Curve Background

3 Side-Channel Analysis Simple Power Attack State-of-the-Art Countermeasures
4) Our Contribution
(5) Conclusion

THE M COMPANY

Conclusion

- Optimizing additions rather than doublings is a valid strategy for secure implementation.
- First proposition for secure multi-multiplication.
- Most EC protocols can benefit from multi-multiplication implementations.

