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Introduction

Discrete Log Problem (DLP)

Given two elements G,P of a cyclic group, find a scalar k such
that:

G + · · ·+ G︸ ︷︷ ︸
k times

= [k ]G = P

• DLP is a assumed to be a hard problem
• Elliptic Curve Cryptography (ECC) is based on this problem
• ECC implementations must not reveal secret scalars
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Elliptic Curve Definition

Short Weı̈erstrass equation

p > 3, {a,b} ⊂ Fp, 4 a3 + 27 b2 6= 0.

(E) : y2 = x3 + a x + b .

(E (Fp) ∪ O,+) abelian group.
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Elliptic Curve Group Law
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Scalar Multiplication

Right-to-Left Evaluation J

Left-to-Right Evaluation I

• A doubling is performed for every scanned bit
• An addition is performed only for non-zero bit
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Improved Techniques

• Pre/Post-computations
• RAM consumption
• Reduce the number of doublings and additions
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Scalar Multiplication Analysis

• The secret scalar k can be recovered

Scalar multiplication

Dbl Add Dbl Dbl Add . . . . . . . . .

. . . . . . . . .

Add

Scalar multiplication

1 0 1 . . . . . . . . . 1
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Regular Algorithms

• Operation flow independent of the secret
• Exemples: Double and Add Always, Montgomery Ladder,. . .

Scalar multiplication

Dbl Add Dbl Add Dbl Add Dbl Add . . .

. . .
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Atomicity Principle

• Introduced by Chevallier-Mames, Ciet, Joye [2003]
• One sequence of operations in Fp.

• Use this sequence with different operands.

�


Multiplication
Addition
Negation
Addition

Chevallier-Mames et al. EC Operations
Doubling: ���������� 10M + 20A + 10N
Addition: ���������������� 16M + 32A + 16N

Cardis 2013 14



Atomicity Principle

• Introduced by Chevallier-Mames, Ciet, Joye [2003]
• One sequence of operations in Fp.
• Use this sequence with different operands.

�


Multiplication
Addition
Negation
Addition

Chevallier-Mames et al. EC Operations
Doubling: ���������� 10M + 20A + 10N
Addition: ���������������� 16M + 32A + 16N

Cardis 2013 14



Atomicity Principle

• Introduced by Chevallier-Mames, Ciet, Joye [2003]
• One sequence of operations in Fp.
• Use this sequence with different operands.

�


Multiplication
Addition
Negation
Addition

Chevallier-Mames et al. EC Operations
Doubling: ���������� 10M + 20A + 10N
Addition: ���������������� 16M + 32A + 16N

Cardis 2013 14



Atomicity Algorithms

�� =⇒ � 2M + 3A + 2N Longa

�������� =⇒ � 2S + 6M + 10A Giraud-Verneuil

Longa EC Operations I [2007]
Doubling: ���� 8M + 12A + 8N
Addition: ������� 14M + 21A + 14N

Giraud-Verneuil EC Operations J [Cardis2010]

Doubling: � 2S + 6M + 10A
Addition: ��

�����

4S + 12M + 20A
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How to Improve Patterns?

• More operations in a pattern =⇒ less dummy operations.

• Efficient pattern for both addition and doubling?
• Optimize additions?

Doubling:
Addition:
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How to Improve Patterns?

• More operations in a pattern =⇒ less dummy operations.
• Efficient pattern for both addition and doubling?
• Optimize additions?

Doubling: ���������

�� 0

9M =⇒ �
Addition: ���������

�� 0
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New Atomic Patterns

All Curve Pattern I
Doubling: � 3S + 8M + 9A
Addition: �

������

3S + 8M + 9A

Most Curve Pattern I
Doubling: � 2S + 8M + 10A
Addition: �

������

2S + 8M + 10A

a = 0 Curve Pattern I
Doubling: � 2S + 7M + 8A
Addition: �

������

2S + 7M + 8A
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New atomic Patterns

All Curve Pattern
This pattern can be used with all existing elliptic curves.

Most Curve Pattern

This pattern restricts the value I2 = −a3−1 to be a quadratic
residue. Then we have:

3X 2 + aZ 4 = 3(X − IZ 2)(X + IZ 2)

a = 0 Curve Pattern

For security and efficiency reasons, the curves with a = 0 have a
dedicated pattern.
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Implementation Limits

[k ]P for unknown P

• NAFw=4

• ` doublings and `/5 additions

[k ]G for fixed point G

• Precompute Q =
[
2`/2]G once for all

• Split k and compute [k ]G = [k0]G + [k1]Q
• JSF
• `/2 doublings and `/4 additions
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Implementation Characteristics

bit size 192 224 256 320 384 512 521
A/M 0.21 0.21 0.19 0.17 0.16 0.14 0.14

GV A/M 0.30 0.25 0.22 0.16 0.13 0.09 0.09
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Performances
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Countermeasure Overhead
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Conclusion

• Optimizing additions rather than doublings is a valid strategy
for secure implementation.

• First proposition for secure multi-multiplication.
• Most EC protocols can benefit from multi-multiplication

implementations.
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